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Abstract—Full-wave design of canonical waveguide filters
by optimization is presented. For full-wave modeling, the filter
structureis decomposed into the cascade connection of waveguide
step and/or bifurcation discontinuities, and waveguide T-junction
discontinuities. Generalized scattering matrices of each disconti-
nuity are obtained using the mode-matching method, from which
thefilter response can be obtained using the cascading procedure.
For optimization design, an error function to be minimized is
constructed according to the design specification. Polynomial
curve fitting is used to characterize each discontinuity to speed
up the optimization process. Full-wave approximate synthesis
of input/output and inter-cavity coupling iris dimensions is also
described. Design examples of four- and six-cavity canonical
waveguide filters are presented to demonstrate the feasibility
of the design approach. An experimental four-cavity filter is
machined and tested. Measured results are in good agreement
with computed results.

Index Terms—Waveguide filters.

|. INTRODUCTION

N CANONICAL waveguide filters, coupling between

nonadjacent cavities can be realized to achieve a true
eliptic-function filter response. Compared with conventional
direct cascaded Chebyshev filters, canonical filters have the
advantages of sharp selectivity, flat in-band, light weight,
and compact size [1]. In practice, however, it is difficult to
determine precisely the coupling iris dimensions because of the
interactions among input/output coupling irises, adjacent and
nonadjacent inter-cavity coupling irises, and tuning screws for
the cavity resonant frequency. Considerable experimental char-
acterization and manual tuning efforts are required [2], [3]. To
eliminate or at least reduce the time-consuming efforts, some
new filter configurations, which are suitable for exact full-wave
modeling and optimization, have been proposed in [4]{7].
In this paper, full-wave design of canonical single-mode
rectangular waveguide filters by optimization is presented.
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Fig. 2. Modeling of the canonical waveguide filter. (a) Configuration.
(b) Network representation.

Design examples of four- and six-cavity canonical waveguide
filters are presented to demonstrate the feasibility of the design
approach.

[1. MODELING AND OPTIMIZATION

Fig. 1 shows the configuration of a canonical single-mode
rectangular waveguide filter. It consists of two identical halves.
Each rectangular cavity resonates in its fundamental TE;o;
mode at a common center frequency. Each cavity in one half is
coupled with its neighboring cavity or input/output waveguide
in the same half by means of magnetic fields through a narrow
dlot or window in the sidewall of the cavity. Each cavity in one
half is coupled with its corresponding cavity in the other half
by means of either electric fields through a square aperture in
the center of the cavity or magnetic fields through one or two
narrow slots at the edge of the cavity. The couplings produced
by means of electric and magnetic fields have opposite signs,
which enables realization of elliptic-function filter response.

Since the filter structure consists of two identical halves, by
putting perfect electric conductor (PEC) and perfect magnetic
conductor (PMC) boundary conditions at the symmetry plane,
only a half-structure is to be modeled, as shown in Fig. 2(a),
where the symmetry plane is shaded. For full-wave modeling,
the half-structure can be decomposed into the cascade connec-
tion of two kinds of waveguide discontinuities, as shown in
Fig. 2(b). For the convenience of description, the discontinuity
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introduced by the coupling iris between two corresponding cav-
itiesin the top and bottom halves [which is shaded in Fig. 2(a)]
is hereafter called the vertical discontinuity, while the disconti-
nuity introduced by the coupling iris between two neighboring
cavitiesin the same half or between input/output waveguide and
first/last cavity is hereafter called the horizontal discontinuity.

The horizontal discontinuity can be viewed as a back-to-back
cascade connection of waveguide step discontinuity. The wave-
guide step discontinuity is modeled using the mode-matching
method, from which the generalized scattering matrix Sy of
the two-port horizontal discontinuity is obtained using the cas-
cading procedure.

The vertical discontinuity can be viewed as a waveguide
T-junction discontinuity cascaded with either waveguide step
or waveguide bifurcation discontinuity at its branch waveguide,
with termination conditions of a PEC or PMC (placed at the
shaded symmetry plane). The waveguide T-junction discon-
tinuity is modeled using the mode-matching method, from
which its generalized scattering matrix is obtained [8]. The
waveguide bifurcation discontinuity is virtually the same as
the waveguide step discontinuity. With termination conditions
of a PEC or PMC, the generalized scattering matrix Sy, or
Sy, of the two-port vertical discontinuity is obtained using the
cascading procedure. Here, two cascading algorithms are used.
Oneis to cascade a three-port network and a two-port network
into a new three-port network. The other is to terminate one
port of athree-port network using PEC (short) or PMC (open)
conditions such that the three-port network becomes a two-port
network.

Fig. 3 shows the convergence of scattering parameters of
two vertical discontinuities versus the maximum field index N .
Here, N = N, = N, with N, and N, representing the max-
imum field indexes m and n inthe TE(2,,,—1), OF TM 2y, 1)n
mode of the main waveguide, respectively. The maximum
field indexes in other waveguides are chosen according to
the dimension aspect ratio. Note that since the structure is
symmetrical with respect to the PMC haf-a-plane, only the
odd field index (2m — 1) is considered. It is seen from Fig. 3
that convergence can be achieved when N = N, = N, > 8.
Figs. 4 and 5 show the comparison of scattering parameters of
two vertical discontinuities obtained using the mode-matching
method described above and HFSS. A good agreement is
observed.

Once the individual generalized scattering matrices of each
discontinuity are obtained, two generalized scattering matrices
I'. and I',,, of the one-port half filter structure (with PEC and
PM C boundary conditions placed at the shaded symmetry plane,
respectively) can be obtained using the cascading procedure, as
shown in Fig. 2(b), from which the filter response can be found
as

r..(1, 1)+T.(1,1)
2

Fnl(lv 1) — Fe(lv 1)
2

Si1 = )

2

S12 =

where S;; and Sy, arethereturn and insertion losses of thefilter,
respectively,andI',,,(1, 1) and . (1, 1) arethedominant-mode
(1, 1) entries of the generalized scattering matricesT',,, and I,
respectively.
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Fig. 3. Convergence of scattering parameters of two vertical discontinuities.
(a) Dimensionsininchesarea = 2.29,b = 1.145, ¢ = d = 1,and h =
0.5. (b) Dimensions in inchesarea = 2.29,b = 1.145,¢ = 0.5,d = 1,
adh = 0.5.N = N, = N, where N, and N, represent the maximum
field indexes m and n in the TE(2+.—1y» Of TM(2,_13,, mode of the main
waveguide, respectively. In computation, the frequency is 4 GHz.

For optimization design, an error function to be minimized
is constructed according to the design specification. The error
function could be constructed based on the response of thefilter
at its zero, pole, and passband edge frequency points f., f,, and
fe asfollows[9]:

2

N M
Errf = Z [Sll(fpi)[2 + Z [SQl(fzi)[2 + Z
i=1 i=1 =1
(1811 (fei)] — 6)2 (3)

where N and M are the numbers of zero and pole frequency
points, respectively, and ¢ is a passband ripple-related quantity.
Theoretically, thefilter is uniquely determined if its response at
these frequency points is determined.

In order to speed up the optimization process, each discon-
tinuity is characterized using polynomial curve fitting [10].
Since the generalized scattering matrix of the discontinuity is
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Fig. 4. Scattering parameters of a vertical discontinuity. (a) Magnitude.
(b) Phase. Dimensionsininchesarea = 2.29,b = 1.145,¢ = d = 1, and
h = 0.5. Theirisis terminated with a PMC.

a well-behaved function of frequency and iris dimension, it
is first computed using the mode-matching method at sample
frequency and iris-dimension points, and then curve fitted
by polynomial functions of frequency and iris dimension.
During the optimization, the generalized scattering matrix of
each discontinuity is obtained using the polynomia curve-fit-
ting functions instead of the mode-matching method, which
dramatically reduces the optimization time. Otherwise, the
optimization process would be nearly impossible.

In optimization, the initial values of optimization variables
are important. In Section |11, full-wave approximate synthesis
of input/output and inter-cavity coupling iris dimensions will
be described.

1. SYNTHESIS OF COUPLING IRIS DIMENSIONS

For the input/output coupling iris, a structure composed of a
rectangular cavity (which represents the first/last cavity) cou-
pled with an input/output rectangular waveguide through a cou-
pling irisis considered. Other inter-cavity couplings associated
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Fig. 5. Scattering parameters of a vertical discontinuity. (a) Magnitude.
(b) Phase. Dimensionsin inchesarea = 2.29,b = 1.145,¢ = 0.5,d = 1,
and h = 0.5. Theirisis terminated with a PEC.

with the input/output (or first/last) cavity are neglected. Using
the modeling approach described in Section I, the reflection
coefficient of the structure can be obtained. The input/output
structure can be represented by an equivalent circuit composed
of aseriesresonator of resonant frequency f, and characteristic
impedance of 1 €2 connected with anormalized input/output re-
sistance R. The input impedance of the series resonator is

Zi = jA 4)
where
S o2
A= BT T (f = fo)- )

The reflection coefficient p of the resonator and its phase ¢ are
given by

_Zi—R jA—R —R2+ X2+ j2R\
T Z;+R  jA+R R2 + )2

p (6)
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and

2R\
From the above equation, the derivative of the phase with respect
to the frequency can be derived as

49  d6  d(tan6)
df ~ d(tan6)  df
B 1 d(tan 6)
T 1+tan?6  df
—_4r L - . ®)
Jo B2+ =5 (1 = foy?
fo

It is seen from the above equation that the resonant frequency fo
of the resonator isthe frequency at which |d6#/df | is maximum.
The normalized input/output resistance R can be derived from
(7) and is given by

f—fo1l—cos@
fo sin @

where @ isthe phase of the reflection coefficient at frequency f.

Fig. 6(a) and (b) shows the (loaded and unloaded) resonant
frequency and the input/output coupling (in megahertz) of an
input/output structure versus the width of the coupling iris, re-
spectively. Theexistence of theinput/output coupling irislowers
the resonant frequency of the cavity. Theloading effect becomes
larger with an enlarged iris opening (here, theiriswidth), which
also gives alarger coupling value.

For theinter-cavity couplingiris, astructure composed of two
identical rectangular cavities coupled together through one or
two coupling irises is considered. Other inter-cavity couplings
associated with the two cavities are neglected. By putting PEC
and PM C boundary conditions at the symmetry plane, using the
modeling approach described in Section 11, two natural resonant
frequencies f. (PEC) and f,, (PMC) can be found [11]. The
normalized coupling coefficient k is calculated as

f2 _ f2
TR
If the coupling ismainly dominated by electric fields, then f. <
fm and, hence, £ < 0. On the other hand, if the coupling is
mainly dominated by magnetic fields, then f,,, < f. and, hence,
k > 0.

R=2

©)

k

(10)

IV. RESULTS

To demonstrate the feasibility of the design approach pre-
sented in this paper, a four-cavity canonical waveguide filter
with a center frequency of 4 GHz and a bandwidth of 40 MHz
is designed first. The synthesized prototype filter has the fol-
lowing normalized input/output resistance and coupling matrix:

R; =R, = 1.014283 (11)
0 084135 0  —0.22423
0.84135 0  0.78212 0
M= 0 078212 0 084135 | (12
—0.22423 0  0.84135 0
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Fig. 6. (a) Resonant frequency and (b) coupling (in megahertz) of an

input/output  structure. The input/output rectangular waveguide and the
rectangular cavity have cross-sectional dimensions of 2.29 x 1.145in? and the
rectangular cavity has alength of 1.81 in. The input/output coupling iris has a
height of 0.3 in and a thickness of 0.05 in.

Fig. 7 showstheideal circuit response of the prototype filter. In
the calculation, an unloaded ) of 8000 is used.

The configuration of the physical filter is shown in Fig. 8.
The negative (electric) coupling between cavities 1 and 4 is
achieved through a sgquare aperture in the center of the cavity.
The input/output rectangular waveguide and rectangular cavi-
ties have cross-sectional dimensions of 2.29 x 1.145 in?. All
coupling irises are assumed to have athickness of 0.05 in. Other
remaining irisand cavity-length dimensions of thefilter arefirst
synthesized according to the approximate synthesis approach
described in Section I1l. They are then used as initial values
for optimization. Table | givestheiris and cavity-length dimen-
sions of the filter before and after optimization. The computed
responses of the filter before and after optimization are shown
in Fig. 9(a) and (b), respectively. In Fig. 9(b), the solid lines
are the computed response with polynomial curve fitting used
for discontinuity characterization, whilethe circle points are the
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Fig. 7. Ideal circuit response of the four-cavity prototype filter.
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Fig. 8. Configuration of the four-cavity filter.

TABLE |
IRIS AND CAVITY LENGTH DIMENSIONS (GIVEN IN INCHES) OF THE
FOUR-CAVITY FILTER OF FIG. 8. THE THICKNESS OF ALL COUPLING
IRISES 1S 0.05in

before optimization | after optimization
IJOR 1.000x0.3 1.001x0.3
Mia (May) | 0.706x0.05 0.713%0.05
Mo 0.720x0.05 0.815%0.05
Mg 0.350%0.350 0.414x0.414
Ly (Ly) 1.855 1.812
Lo (Ls) 1.905 1.900

computed response using the mode-matching method directly.
They agree well with each other.

In order to facilitate the fabrication of coupling irises in
canonical waveguide filters, instead of narrow dots, which
are commonly used, full-height inductive windows could be
employed for redlization of the input/output coupling and the
inter-cavity couplings between neighboring cavities in the
same haf. The configuration of the alternative four-cavity
filter isshown in Fig. 10. Table Il gives the optimized iris and
cavity-length dimensions of the filter. Its computed response is
aso shown in Fig. 11 using solid lines. The filter is machined
and tested. The measured response is shown in Fig. 11 using
dashed lines. It is seen that the measured response is in good
agreement with the computed response.

In order to further demonstrate the feasibility of the design
approach presented in this paper, a six-cavity canonical wave-
guide filter with a center frequency of 4 GHz and a bandwidth
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Fig. 9. Computed response of the four-cavity filter. (a) Before optimization.
(b) After optimization.

1/0 1 2

1/0 4 3
Fig. 10. Configuration of the alternative four-cavity filter.

TABLE I
IRIS AND CAVITY-LENGTH DIMENSIONS (GIVEN IN INCHES) OF THE
ALTERNATIVE FOUR-CAVITY FILTER OF FIG. 10. THE THICKNESS
OF ALL COUPLING IRISES1S0.05 in

I/OR 0.773x1.145
Mo (Msg) | 0.370x1.145
Mas 0.815x0.05
]\114 0.407x(.407
Ly (La) 1.797

Ly (Ls) 1.895
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Fig. 13. Configuration of the six-cavity filter.

of 36 MHz is designed. The synthesized prototype filter hasthe
normalized input/output resistance and coupling matrix shown
in (13) and (14), at the top of the following page. Fig. 12 shows
the ideal circuit response of the prototype filter. It has six poles
in the passband and two zerosin either side of the stopband. The
configuration of the physical filter is shown in Fig. 13. Its opti-
mized iris and cavity-length dimensions are given in Table I11.
Fig. 14 shows the computed response of the six-cavity filter. It
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TABLE Il
IRISAND CAVITY-LENGTH DIMENSIONS (GIVEN IN INCHES) OF THE SIX-CAVITY
FILTER OF FIG. 13. THE THICKNESS OF ALL COUPLING IRISES1S0.05in

/0 R 0.998%0.3
Mia (Mse) | 0.700x0.05
Moz (Mys) | 0.604x0.05
M3y 0.786x0.05
M 0.312%0.05
Mas 0.409x0.409
Ly (Le) 1.806

Lo (Ls) 1.913

L3 (L4) 1.908
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Fig. 14. Computed response of the six-cavity filter.

can be seen that the ideal circuit response of the prototypefilter
is nearly reproduced in the computed response of the physical
filter. The feasibility of the design approach presented in this
paper is once again demonstrated.

V. SUMMARY

Full-wave design of canonical waveguide filters by opti-
mization has been presented. For full-wave modeling, the filter
structure is decomposed into the cascade connection of wave-
guide step and/or bifurcation discontinuities, and waveguide
T-junction discontinuities. Generalized scattering matrices
of each discontinuity are obtained using the mode-matching
method, from which the filter response can be obtained using
the cascading procedure. For optimization design, an error
function to be minimized is constructed according to the
design specification. Polynomial curve fitting has been used to
characterize each discontinuity to speed up the optimization
process. Full-wave approximate synthesis of input/output and
inter-cavity coupling iris dimensions has also been described.
Design examples of four- and six-cavity canonical waveguide
filters have been presented to demonstrate the feasibility of the
design approach. An experimental four-cavity filter has been
machined and tested. Measured results are in good agreement
with computed results.
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R, =R, =1.121254 (13)
0 0.88336 0 0 0 0.04863
0.88336 0 0.56859 0 —0.26420 0
0 0.56859 0 0.78178 0 0
M = 0 0 0.78178 0 0.56859 0 (14)
0 —0.26420 0 0.56859 0 0.88336
0.04863 0 0 0 0.88336 0
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